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In active sonar and radar target tracking, measurements consist
of position and often also include range rate. Tracking algorithms
use these measurements over time to estimate target state compris-
ing position, velocity and, where applicable, turn rate. In most cases
there is an underlying assumption in the tracking algorithm that the
target is a “point target” (i.e. the target has no physical extent). An-
other common assumption is that at most one measurement per scan
originates from the target. For certain combinations of transmitted
waveform and target type, the resolution of the waveform is such
that the target is “over-resolved” (i.e. the sensor resolution is high
enough that closely spaced scatter centers can be resolved). For such
cases the point target assumption must be replaced with an extended
target assumption. This work provides a methodology to exploit the
extended nature of the target for the case of a rigid target whose
spatial characteristics are fixed with respect to the line of motion.
By employing a combination of the expectation maximization (EM)
algorithm and allowing more than one measurement per scan to
originate from the target, a technique is developed that uses a single
scan of raw measurements that include range, bearing and range
rate to provide an estimate of target position, velocity, heading and
turn rate. This single scan estimate is then used in a nearly constant
turn rate extended Kalman filter to provide a multi-scan estimate

of the target state.
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I.  INTRODUCTION

In active sonar and radar target tracking systems,
the goal is often to provide an estimate of the target’s
state using measurements of range, bearing and range
rate. Target dynamics are best modeled in Cartesian
coordinates and consist of position, velocity and often
include acceleration or turn rate. Common models for
target dynamics are the nearly constant velocity, nearly
constant acceleration and coordinated turn models [1].

In the formulation of the tracking algorithm it is
common to assume that the target has no physical
extent. This assumption is reasonable if the resolution
of the transmitted waveform is greater than or equal
to the size of the target. If, however, the resolution
of the measurements is small enough that the spatial
characteristics of the target can be measured, this “point
target” assumption must be relaxed.

If the sensor is capable of resolving individual mea-
surement sources within an extended target and detailed
knowledge is available to model these sources, the tar-
get can be modeled as a set of discrete measurements
sources within an extended object [2]. An alternative is
to estimate the overall shape of the target as opposed
to individual components. Within this shape estimation
approach, numerous models exist. Two approaches that
represent the extended target as an ellipse are [14],
which uses symmetric, positively definite (SPD) ran-
dom matrices; and the approach of [3] which employs
a random hypersurface model (RHM). The RHM ap-
proach has been extended to more complex shapes in [2]
by using star-convex RHMs. Irregular shapes are han-
dled in [15] by using multiple (possibly overlapping)
ellipses. Another approach to modeling spatial extent
uses the assumption that the number of target measure-
ments is Poisson distributed, with the measurement(s)
drawn from a spatial distribution [9], [10], [11].

While these approaches are excellent and fairly lib-
eral with regards to shape, a different approach is cho-
sen here that aims to fully exploit the range rate mea-
surements at the expense of using a somewhat more
restrictive target model. The target model chosen in this
research is that of a target “template” that characterizes
the locations of target highlights (i.e. the active reflec-
tors of the target). While the size and orientation of
the target is unknown, the relationships of the highlight
locations are assumed to be known a priori. It is also
assumed that the target is rigid and has spatial charac-
teristics that are fixed with respect to the line of motion.
(The model can be viewed as a parameterized version
of a “discrete” spatial distribution, as discussed in [5],
[10]. The idea of using a set of reflectors can also be
found in [13]; however, in [13] the relative positions of
the reflectors are based on a known target size, while in
the model proposed here, the size is unknown.) With this
parametrized model, a single scan estimate of position,
velocity, heading and turn rate can be made. This single
scan estimate can then be utilized in a multi-scan tracker
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(e.g. an extended Kalman filter) with a coordinated turn
motion model (nearly constant turn rate) [1].

To provide the target estimate, the measurements
from the extended target must be assigned to the indi-
vidual target highlights. This is achieved by employing
a combination of the EM algorithm and a version of
the probabilistic multi-hypothesis tracker (PMHT) asso-
ciation model [18]. Unlike many tracking approaches,
the PMHT (even for a single point target) does not as-
sume there is at most a single measurement per tar-
get. There is therefore a natural compatibility between
the PMHT and extended objects, which have multiple
measurements per target. Also advantageous is that the
algorithm is very flexible and easy to extend [22]. A
pertinent example of this is that the PMHT has been
successfully employed in extended object tracking us-
ing random matrices [20], [21]. The relationship of the
PMHT association model with spatial distributions is
also discussed in [10] and [9].

The combination of this target extent model and EM
based estimation results in an algorithm with similar
characteristics to one from a different field (image pro-
cessing). This concept of aligning measured points to a
template can be viewed as a version of surface registra-
tion. The iterative closest point algorithm (ICP) [23] is a
common approach for surface registration. Its extension,
the multi-scale EM-ICP [12], uses a similar formulation
to the one proposed here; however, the approach of the
present paper allows for the more general measurement
error model needed for radar/sonar processing and uti-
lizes range rate measurements. The novel aspect of the
approach proposed here is the employment of a template
based target model and utilization of existing techniques
(EM, observed information matrix and the EKF) in an
innovative way to exploit the extended nature of the
target to improve state estimates.

The remainder of this paper is organized as follows:
Section II introduces the model for the extended tar-
get and the measurements; Section III describes the ap-
proach for single and multi-scan estimation; Section IV
provides a simulation of the algorithm and examines
the resulting performance and Section V provides some
concluding remarks. This paper is a continuation of the
work presented in [7], with portions of [7] repeated here
for continuity. This paper extends [7] by (i) modifying
the measurement model to improve performance, (ii)
providing an estimate of the converted measurement er-
ror covariance using the observed information matrix
and (iii) utilizing the converted measurement in an ex-
tended Kalman filter.

IIl. THE MODEL

A. Extended Target Model with Discrete Reflectors

In active radar and sonar processing, the transmitted
signal is reflected off the target and returns to the
receiver, resulting in measurements of range, bearing
and range rate. The reflections are due to a finite number
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of strong reflectors, such as the nose and engines of
an aircraft or the bow and sail of a submarine. For
waveforms with high spatial resolution, it is possible
to resolve the individual reflectors from the target as
opposed to the integration of all the reflectors. In many
cases there is general knowledge of the relative locations
of the primary reflectors for a given target class (e.g.
a military aircraft), that can reasonably represent a
number of targets in that class. Using this premise, an
extended target model approach can be developed as
in [7].

The target is therefore represented as a set of M
highlights (i.e. reflectors) forming a template for a
general target. Each reflector, j =1---M, is specified
with a probability of detection, ¢, and a position in 2D
Cartesian coordinates,

=[5
! y:()

relative to the center of the target. While the shape of
the target is known, the orientation, 1, location (of the
center), X = [x y]T, and size, s, are unknown.

An assumption is made that the direction of travel of
the object is along the orientation, 1, of the target (i.e.
the plane flies forward, not sideways).1 Furthermore,
we assume the target is following a coordinated turn
(nearly constant speed and turn rate) motion model.
Using these assumptions the turn rate, ¢, and speed,
v, can be estimated using a single scan of data.

(1)

B. Measurement Model

The measurement vector for a single scan of N
measurements for time step k is

7,1, k)
o, (i,k)
r,,(i,k)

where the measurement vector includes range, r, bear-
ing, o, and range rate, r.

The measurement error for the raw measurements is
assumed to be Gaussian with covariance matrix

i=1,....N )

Zpaw, (k) =

o? 0 po,o;
Rpaw = 0 o2 0 3)
po,o. 0 03

where o,, 0, and o; are the standard deviations of the
range, bearing and range rate measurement noise. The
correlation coefficient between the range and range rate
measurement noise is p.

I1l. ESTIMATION APPROACH

An overview of the new approach is shown in Fig.
1. First the raw measurements from a single scan are

INote that, due to wind forces, the direction of movement of the
aircraft, or track, is not necessarily same as the heading. Although
this difference is neglected here, the difference may not negligible in
certain scenarios.
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Fig. 1. Overview of the extended target tracking approach.

converted to Cartesian coordinates using the approach
of [6]. These converted measurements are used in an
EM algorithm for a single scan estimate of target posi-
tion, size, heading, velocity and turn rate. The observed
information matrix is calculated and used as a surrogate
for the error covariance of this estimate. Finally, an ex-
tended Kalman filter with a coordinated turn motion
model is used to combine the single scan estimates into
a multi-scan estimate of the target state.

A. Measurement Conversion for an Individual
Measurement

It is advantageous to first convert the raw measure-
ments into Cartesian before processing. The raw mea-
surements are converted into measurements of Cartesian
position, x and y, and velocity, x and y using a simplified
version of the method described in [6].
X, (i, k)

y m(i s k)
X, (1K)
V(i k)

2,k) = )
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r,,(i,k)cos a,,(i,k)
_ .rm(i,k) sina,,(i,k) )
r,,(i,k)cos a,,(i,k)

(i) sina,, (i, k)

The conversion from range rate into Cartesian velocity
assumes that the cross range rate is zero and accounts
for any error in this assumption by setting the variance
in the cross range rate dimension to infinity (or equiva-
lently, setting the inverse to zero). This is implemented
using the inverse converted measurement covariance,
Rij(k)", which has a dimension of four by four, but
is rank 3.

The converted measurement error covariance, R, j(k),
is calculated according to Appendix A.

B. EM Single Scan Estimate from Multiple
Measurements

1) Likelihood Model: Using the set of N measure-
ments in combination with the target model, a single
scan estimate of target position, size, heading, speed and
turn rate can be calculated. The unknown parameters to
be estimated form the vector ¥

=[x" s ¢ v ¢ (6)

The following probabilistic model is used for the
likelihood function of ¥:

M
p,(2; | ®) = Zﬂ-jpij(zi | ) @)

j=1

where, 7; is treated as the prior probability of a mea-
surement originating from reflector j and p, is the con-
ditional probability density for a single measurement
given ¥. This value is approximated using the proba-
bilities of detection (¢;, j = 1,...,M) by assuming each
measurement comes from one of the reflectors, namely,

oS
DY

The probability density function (pdf) for a given
measurement-to-reflector combination, p;; is given by

®)

pij(z; | ¥) = \27rRij\’1/2
A= (.2) R v (RLz)) ()

where v, j('Il,zi), the difference between measurement i
and reflector j, is

sD('g/;)tj +X
v, (W.z) =1z, — | veosy — si|t,|sin(w +6,) | (10)
vsiny + s':j;\tj|cos(w +0))
where " i
cos —sin
D)= Linw cos } 0
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Fig. 2. Turn rate contribution to range rate.

is the rotation matrix,

6] = /% () +3,0)?

is the distance from reflector j to the target center,

(12)

0; = atan2(y,(j),x,(j)) (13)

is the angle of the line from the center to reflector
Jj; relative to the reference direction, and R; ; is the
converted measurement error covariance matrix (see
appendix A).

The term sD()t; + x provides the position of target
highlight j, scaled by the size, s, rotated by the heading
1, and translated by the position of the target center x.

In order to simultaneously estimate target speed
(along its heading) and turn rate, the contribution of
these terms to the measured instantaneous velocity must
be separated. The terms vcos and vsiny are the con-
tributions of the target center’s velocity to measured ve-
locity. The terms s¢|tj| sin(¢ + 6,) and sz/.)|tj| cos(y) +0,)
are the contributions due to turn rate. Fig. 2 shows the
path of the target on the left [7]. When the motion of
the target center is removed (as shown on the right), the
motion of the individual highlights due to turn rate is
evident.

The incomplete-data log-likelihood of ¥ based on
all the measurements Z is given by [4]:

InL(¥;2) =Inp,(Z| )

N
=In]]p,z | ®)

i=1

N M
= Zln Zﬂ'jpij(zi | \I’,t]) (14)
i=1 j=1

where p is the conditional probability density of the set
of measurements Z, given ¥. For each measurement, z;,

one has here the summation of its pdf if originated from
reflector j and weighted by ;.

2) Solving for ¥: To estimate ¥, one can find the
vector that maximizes (14). The difficulty with (14)
is the log of a sum. However, by recognizing (7) as
a mixture model, the problem can be approached with
the EM algorithm. The inside summation can be rewrit-
ten according to the EM approach using binary mul-
tipliers as missing data. The “missing” data are asso-
ciation variables that declare which reflector produced
each measurement [16]. These association variables are
expressed as binary vectors where each element in the
binary vector corresponds to a reflector.
The binary vectors are defined as

YV=Iyl,....ynl"

where y; = [y;},.... ¥y, 1" is a M-dimensional binary vec-
tor (O or 1), such that Yij is one if measurement i is a
reflection from reflector j, and zero otherwise. Each
vector y;; contains only one nonzero element. The com-
plete log-likelihood, based also on Y is

(15)

InL(¥:2,)) = Inp(2.V| ¥)

N
=Zln
i=1

M
PRILHCARD

= j=1
N M

=33 yiInGr;py(z | ®))  (16)
i=1 j=1

where p, is the conditional probability density of the
complete data, Z and ), given . If we view the missing
data, ), as random variables, the EM O function can
now be found. In the EM algorithm, the Q function is
iteratively maximized. This function is the expectation
of the complete log-likelihood, with the expectation
operation conducted with respect to the unknown data
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YV, given the observed data, Z, and the estimate of ¥
from the previous iteration, ¥, namely,

Qv 2) = E{InL (¥;2,))| 2,

N M
QW ¥, 2) =3 "> (¥, z)In(r;py(z; | ¥))

i=1 j=1

N M
SRS
i=1 j=1

[in(7 ) — L In(]27R;;])

A7)

v, z)TR v, (¥,2,)] (18)

21/

where w;; is the estimate of the posterior association

probabilities y;; given the measurements and the previ-
ous estimate ¥, allowing for more than one measure-
ment to be a reflection from a single reflector. Since
this association model allows for more than one mea-
surement to be a reflection from a single reflector, the
model is an application of the PMHT association model
[18]. The association probabilities are

Wij(‘Il(l)’Zi) = p}(yl] | Zi’\I’(I))
__ mpy@ ) (19)
Z%zl 7Tmpim(zi ‘ ‘II(Z))

where p, is the conditional probability of an association

pair, given ¥¥ and measurement z;. The w, ; calculation
given above assumes a clutter free environment. The
extension to a cluttered environment is quite straight-
forward and simply requires an additional clutter dis-
tribution term in the denominator of the expression for
w;; [18] and the appropriate modification to ).

For the M step of EM, the Q function is maximized
with respect to ¥. The ¥ that maximizes (18) can be
found by solving

Ve ;90 2) =0 (20)

to yield ¥+ where

N M
1
Vi Q¥ ", 2) = — [V 33 w0,

i=1 j=1
v, j(xp,z,.)TRl.jly,.j(\I:,zi)]

2D
is symmetric and using

Vil fDAf (0} = 2(V, f(x)TAS (%)
one can simplify (21)

Since Ri;I
(22)

N M
Ve Qw0 2) =~ "w,; (¥, z)

i=1 j=1

(W (E)R v (R,7) (23)
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where
v (®) = Vy,/(P,2;) (24)
The components of v/;(¥) are
1 0 a3 a4 0 O
0 1 0O 0
V(@) = — Gz Ay (25)
0 0 a3 a3y az as
0 0 a3y ay ags
where
3]l D
a .
21 = | —olt|sin(@ +6)) (26)
as3 .
s, ] L ¥|t;[cos(y +6))
[@a] sD' (),
a )
= | —vsing — syt |cos( +6,) | (27)
34 :
La, | L vcosw—sw|tj|sin(¢+9j)
{aﬁ' _ [cosw} 28)
ays | siny
{a%' _ [—s|tj|sin(1/1+9j)} 29)
Ay | s|t;|cos(y +6,)
and , —siny —cosy
D(y) = . (30)
cosyY  —siny

Since (20) cannot be solved directly, a first order
Taylor expansion is used to find ¥+, the maximizing
¥, given ¥, namely,

N M
DN (@O ) ()R

i=1 j=1

vy (®,2) + ;)@Y —e ) =0 (31)
which leads to
‘I’(I+1) — \I,(l)
N M -
+ (ZZWij(‘I’(l)’Zi)V;j(‘I')TRijl”i,/‘(‘I'))
i=1 j=1
N M
' <Zwaj(‘l'([)’zi)’/i/j(q’)TRijlVi/'(\I”zi))
i=1 j=1 ha0)
(32)

The resulting EM algorithm is defined as follows:

1) Initialize ¥®
2) Calculate w using (19)
3) Solve for ¥*D ysing (32).

4) Iteratively repeat steps 2 and 3 until a convergence
criterion is met (e.g. when the increase in the com-
plete log-likelihood is below a threshold).

5) Set W (k) = ¥ ® at the last iteration, [ = L
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C. Observed Information Matrix

In order to provide a measure of uncertainty for the
estimate \f’, critical information for tracking, the ob-
served information matrix is used as a surrogate for the
inverse covariance matrix. Oakes’ formula [17] for the
observed information matrix is used (see Appendix B).

—Ve Ve InL(¥;2) = —[Vy, Vg QW D) 2)

+ Vg Veu Q80 2)]
(33)

Evaluating (33) using ¥ = ¥ results in the “observed
information matrix,” I(lfl;Z) [16].

The first term on the right hand side of (33) is the
observed information if the associations were known,
I.(V;2):

L(¥:2)=-V,VIow, ¥, z)

N M
= —ZZWZ-]-(\I’(Z),ZI-)

i=1 j=1

[ (0) TR V,(®) + B, (2] (35)

(34)

where the B matrix is based on the second derivative
of v,

00 0 0 0 07
00 0 0 0 0
00 0 by 0 b
B(¥.z;) = — 3“ S D
0 0 by by bys bys
00 0 bs 0 0
with components:
D'()t; !
byy = | —Ult;|lcos(w +0)) | R;'v,(¥.2) (37)
LIt Isin( +6))
_ 0 T
b 0 R:'v..(¥,z) (38)
= i V(WL Z
O tyfsin 0y | Y
L |t;[cos(y) +6;)
I —sD()t; T
by = | —veost +slt,|sin(w +0,) | R;'v;(¥.z)
_—vsinw—sz/}|tj\cos(w+9j)
(39)
0 T
b 0 R:'v (¥,z) (40)
= .. \Z.
45 —SiIl’L/} ij “ij i
cos
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0 T
0

—s|tj\ cos(y) +0;)

—s|t;[sin(y +6;)

The second term on the right hand si(Aie of (33)

accounts for the association uncertainty, I, (¥; Z). This
is found by taking the derivative of Q with respect to

W, and taking the derivative with respect to ¥®" | i.e.
L(¥:2) = ~Vy Vi Q¥ 2", 2)

by = R;'v(¥,2) (41)

N M
= 3N WP, 2) (W, (8) R (P 2,)
i=1 j=1
(42)
where w' is the derivative of (19)

Wz/'j(\I’(L)’Zi) =7,;p;(2; | T D)

M -2
{ (Zﬂ-mpim(zi | ‘I’(L))>
m=1

M
: Z[meim(zi AR

m=1

W (TR, I,

im “im
B (Vi/j(‘l’(L)))TR,';IVU(‘I’(L),ZI')
M
Zm:l anpim(zi | ‘II(L))

D. Extended Kalman Filter for Multi-Scan Estimation

(43)

(¥, z)]

The single scan estimate of the target state can be
used in an EKF to provide multi-scan estimates. The
EKF for a coordinated turn motion model is well known
for the case of position only measurements (pp. 466—
470 of [1]). The state vector for the CT-EKF is

0=Ix; % vy v vpl" (44)
Note that the subscript 0 is used to avoid confusion

between the elements of 8 and ¥,
The dynamic equation is

Ok + 1) = f[k,0(k)] + T (k)v(k) (45)
and the state prediction is:
Ok + 1| k) = fIk,0(k | k)] (46)
where f [k,é(k | k)] is:
B sin(%(k)T) 1= cgs({bé(k)r) o]
by(k) (k)
0 cos(Wy()T) 0 —sin(@pT) 0
1 — cos(4hy(k)T) sin(b(k)T) 0k | k)
() (k) 47
0 sin@(T) 0 cos(y(WT) 0
Lo 0 0 0 14
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and

> 0 0
T 0 O
L'ky=| 0 412 0 (48)
0 T O
0 0o T
The state prediction covariance is:
P(k+1|k) = F(k)P(k | k)F (k)"
+ T (OQ®KT (k)" (49)

where Q is the covariance of the process noise, v, and

F(k) = w

(50)
06 0=0(k+1[k)

Two modifications to the CT-EKF in [1] are necessary
for this application. This first is in the observation func-
tion. Using the single scan estimate, W, as the observa-
tion, the full state vector can be observed, thus elimi-
nating the need for an observation matrix (commonly
referred to as the H matrix, i.e., here H is the identity
matrix). The single scan observation, z- and the inverse
observation error covariance, REI, are:

1 0 0 0 0 07
0 0 0 O cosy O
zc(k)=10 1 0 0 0O O|%¥k) (1)
0 0 0 0 sinyy O
(10O O OO O 1]
Re(h) ™" = (A™)TI(¥; 2)A™! (52)
where I(\il;Z) was defined following (33).
1 0 0O 0 0
0 0 00O —sinyy O
A=10 1 0 O 0 0 (53)
0 0 0 O cosyy O
00 0 O 0 1

A second modification is required since REI is not
necessarily invertible. The inverse error covariance ma-
i ! are not in-
vertible due to the fact that the information related to

trices for the individual measurements, R

cross range velocity is zero (it has a zero eigenvalue in
the cross range rate direction). Although, RE' will be
invertible for most scans, it is not invertible if the target
aspect is 90°, or if there is only one measurement in the
scan. To allow for this possibility, the information form
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of the EKF is utilized. The EKF update is:
Wk+1)=[Pk+1|k)y"'+R(k+1)1]!

‘Ro(k+1)7! (54)
Pk+1|k+1)=[Pk+1|k)"

+Rotk+1[k)~17! (55)
Ok +1|k+ 1) =0k+1|k)+W(k+1)

[2c(k) — Ok + 1| k)] (56)

IV.  IMPLEMENTATION AND RESULTS
A. Implementation

1) EM Initialization: ~As with any optimization ap-
proach, care must be taken when employing the algo-
rithm during initialization to avoid convergence to a lo-
cal maximum. The initialization approach chosen here
is as follows.

The initial value for x is simply the mean of all
the position measurements. The initial value for size,
s©_ is set to the ratio of the average distance from
the measurement to x® and the average distance of
the target highlight, t, to the target center. The initial
value for heading, ¢©, is calculated by finding the
covariance of the position measurements and estimating
the heading based on the largest eigenvector. The initial
speed and turn rate are set to 0.

A particular concern for local maximums for many
target models is one at a heading of 180 degrees from
the true heading. To avoid maximizing at this incorrect
heading, the algorithm is optimized using two initial
headings, 180 degrees apart, and the result with the
highest likelihood is used.

Even with proper initialization, converging to a local
instead of global maximum is a concern. To help, the R
matrix is artificially inflated for the first few iterations
of the algorithm. This tends to smooth the likelihood
surface. Optimization on the augmented surface first re-
duces the probability of converging to a local maximum.
This approach is related to the deterministic annealing
EM algorithm [19].

2) Limitations: It is important to note the limitations
of the algorithm in its ability to estimate velocity and
turn rate. Regardless of the target model, the ability to
estimate velocity from range rate measurements will be
limited when the target is traveling across the line of
sight from the sensor. Turn rate estimation will also be
limited for targets that do not have significant width
when the target is traveling directly towards or away
from the sensor. To analyze these effects the Cramer-
Rao low bound (CRLB) is examined for two target
types. Evident in (33) is that the CRLB is a function of
the measurements. The looser bound of (35) is used here
and is calculated using the expected measurement. The
bound provides a lower bound on the average square
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Fig. 3.

error, but is looser than the CRLB due to the fact that it
does not consider assignment uncertainty. Nevertheless,
this bound is sufficient to demonstrate the limitations
in the algorithm at various aspect angles. For this test
the heading was varied from —180 to 180 degrees, the
probability of detection was set to 1, the size was set to
70 m, position set to [10 0]T km, the speed set 120 m/s
and the turn-rate set to 3 deg/sec. The measurement
error covariance was set as follows:

1) o,=2m

2) 0, =1m/s

3) o, =0.05 deg
4) po,o;. =0

EXTENDED OBJECT TRACKING WITH EXPLOITATION OF RANGE RATE MEASUREMENTS

CRLB analysis (using (35)) for a target that has width (target 1) and one without width (target 2).

As seen from Figure 3, if the target has width then
turn-rate and speed can be estimated at all aspects with
the exception of +/—90 degrees. In the case of a
line-like target, such as target 2 in Figure 3, speed
can be estimated at all aspects with the exception of
aspects near +/ — 90 degrees, while turn-rate cannot be
estimated at +/ — 90 degrees and near 0 or 180 degrees.

3) Implementation Details: There are three notable
implementation details that are required for robust per-
formance of the algorithm. The first is dealing with the
inability to estimate velocity when the target aspect is
90 deg. Since the true error covariance of the single scan
estimate is unknown, the observed information matrix
serves as a surrogate. When the true target aspect is
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90 deg, while the observed aspect is near, but not equal
to 90, the observed information matrix will be over-
confident in the velocity estimate. To avoid this, when

the estimated aspect, based on é(k +1|k), is near 90
degrees, the velocity estimate should not be used. This
is achieved by setting the appropriate rows and columns
of R-(k)~! to zero. (For targets with little or no width, a
similar test is required for turn-rate estimation at aspects
near 0 or 180 deg.)

A related issue is that when the estimated target
aspect is close to 90 deg, components of Rx(k)~! may be
close to zero, resulting in a badly conditioned matrix. In
these cases, only the position portion of the single scan
estimate is used. (Note that the first issue occurs when
the true target aspect is 90 deg, while the second issue
is when the estimated target aspect is close to 90 deg).

Finally, since the EM algorithm may converge on a
local maximum, gating is used to validate the single scan
estimate based on the innovation in the EKF update.
If the innovation for either the velocity or turn-rate is
too large, only the position portion of the single scan
estimate is used. Again, this is achieved by setting the
appropriate rows and columns of R-(k)~! to zero.

B. Results

The new algorithm was tested in a aircraft tracking
application. The target template is based on a commer-
cial airliner (see Fig. 4), with probability of detections
for the highlights at 0.8 and 0.9. The aircraft follows
the path shown in Fig. 5. The measurement error co-
variance was set the same as Section IV-A.2. The EKF
is implemented assuming the following process noise:

0252 0 0
o=| 0 257 0 57)
’7"' 2
0 0 (0.6@)

Fig. 6 shows the average normalized estimation
error squared (ANEES) [1] and mean square error
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for position, velocity and turn rate. Errors are shown
for the state prediction (@(k | k — 1)) for the algorithm
(EXTGTEKEF). Since the primary advantage of the pro-
posed algorithm is the exploitation of the target shape
to extract speed and turn rate, a tracker that does not ex-
tract these quantities is used for comparison (POSEKF).
The POSEKEF is identical to the EXTGTEKF, with the
important exception that only the position portion of
the observation, z, is used. This is achieved by set-
ting the appropriate rows and columns of R-(k)™! to
zero. The proposed algorithm exhibits better consis-
tency (ANEES closer to 1) and, in general, improved
mean square error (MSE). Unlike the POSEKF algo-
rithm, the EXTGTEKF does not lag in the turn-rate
estimate since turn-rate is measured directly. The turn
rate estimate for the EXTGTEKEF is significantly bet-
ter when the turn initiates, but it worse in steady state.
This is due to the fact that the turn rate estimate for the
POSEKEF requires three position measurements, result-
ing in a smoother estimate. It is a trade-off between lag
and smoothing. Performance of the EXTGTEKEF is, as
expected, degraded for target aspects near 90 deg. (e.g.
near scan 19), as the EXTGTEKEF reverts to position
only measurements during those periods.

V. CONCLUSION

A novel approach to extended object tracking has
been presented. A target model has been developed
for the target spatial characteristics that is appropriate
for estimation, flexible enough to handle various target
types, and loose enough such that exact knowledge of
the target size is not required. By restricting the spatial
characteristics to be fixed with respect to the line of
motion, the resulting algorithm allows for single scan
estimation of position, heading, size, velocity and turn
rate by using measurements of position and range rate.
These single scan measurements when used in a multi-
scan tracking algorithm (i.e. extended Kalman filter)
provide improved estimates of target position, velocity
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and turn rate compared to a traditional cluster tracker
using only position measurements. A primary advantage
is that the new method, unlike methods using only
position measurements, does not suffer from a lag in
the estimation of turn rate and the resulting estimation
errors.

APPENDIX A° CONVERTED MEASUREMENT ERROR
COVARIANCE

The converted measurement error covariance is ap-
proximated using a simplification of [6]. The calculation
requires a prediction, which is based on the one step
prediction, é(k | k — 1). Using this prediction, in combi-
nation with the target template and the previous estimate
of the size, s, the state of an individual highlight can be
calculated (which will be referred to as xj).

First the predicted highlight state is rotated into the
estimate’s line of sight (LOS) coordinate system. Noting
that the inverse of the direction cosine matrix, D(c,,),
is its transpose, the rotated state is calculated as:

Xg = D(0)'X; (58)
where the predicted bearing to the highlight is
2
a, = tan"! (J;”'k> (59)
Xt 1k

EXTENDED OBJECT TRACKING WITH EXPLOITATION OF RANGE RATE MEASUREMENTS

and X" is the nth component of X.

RE = HEL? +021(1 + e 270)e% — (%52 (60)
R =0 (61)
RE = L&A + po,0)(1 + e 20)e% —%h%y (62)
RY = LR + 021(1 — e 27)e” (63)
RE = LEERH(1 — e 20)e” (64)
RY = LE)? + 021(1 + ¢ 270)e% — (X))
+ G + 021(1 — e 20)em (65)
Since the cross range rate measurement, ém, iS non-

informative, its standard deviation, o, is infinite. One
can, however, set the value of o, used in (65) based
on an a priori estimate of the standard deviation of
target cross range rate to capture the effect that the
cross range rate has on the ability to measure the line
of sight velocity. The remaining components of the
measurement noise covariance in the coordinate system,
Ry (e.g. RE}, R3Y), are are set to infinity to capture that
¢,, 1s non-informative. It is therefore useful to deal with
the inverse of Ry and note that for a positive definite
covariance matrix,

p0102:|_] (66)

{ i
2
poo, O3

-7
1L o o

0y —00
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therefore

(R11{:3’1:3)_l

Rﬁl = (67)

oS O O

0 0 00

The measurement noise covariance for (5), R, I is

R;;' = D(a)Rg'D(a)" (68)

Since R ! is not invertible, R; ; 1s not available for use
in the Kalman filter gain calculation; one has to use the
information form of the Kalman filter. The determinant
of R;; (needed for (9) in the calculation of w;; using
(19)) is also not available, so the determinant of Ry is
used as a surrogate.

This is a simplification of (35)—(38) in [6]. The
simplification is warranted due to the more accurate
measurement in the present manuscript when compared
to the measurement accuracy of [6].

APPENDIX B OAKES” FORMULA

In [17], a simple explicit formula is given for the
observed information matrix. A summary of Oakes’
work is provided below with the necessary background
from [8].

LO¥:2)=pz(Z|T)
P(Z2,Y[¥)

where p.(Z,) | ¥) is defined after (16). Let k(X | Z,¥)
be the conditional probability of the complete data, X,
given the observed data, Z, namely

(69)

P(Z2,)V|¥)

k(X | ZW¥)=""" "~ 70
=" G 7o

Therefore 2.9 ®)

.z _ P&
LW, Z) = —k(X|Z,\II) (71)
and

InL(P;2)=Inp (2, Y |¥)-Ink(X | Z,¥) (72)

Taking the expectation of both sides with respect
to the conditional distribution of X’ given Z, using the
previous estimate ¥ for ¥ gives

InL(P;2) = E{InL(¥;2,))| Z,¥D}
—E{lnk(X | 2,%)| 2,9}
= Qv 2)~H®:;v",2) (73)
using (17) and where
HW; 9D 2) = E{lnk(X | 2,%)| 2,¢D}  (74)
In [8] the following is shown using Jensen’s inequality,

HW; 9D 2) <H@O; w0, z) (75)
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for all ¥ in the parameter space. This is fundamental in

the proof for EM convergence, and leads to
Ve HE: ¥V, 2)|g_g0 =0 (76)

Assuming that the expectation with respect to X and

differentiation with respect to ¥ are interchangeable,
E{VgInk(X|Z2,®)| 29D} =0 (77)

Also, from equivalent statements of Fisher’s informa-
tion,

—E{VaVyInk(X|2,®)| 2,8}
= E{Va k(X | Z,¥)Vo k(X | 2,¥)"| 2,0V}
(78)
Differentiation of (73) with respect to ¥ gives
Vg InL(¥;2) =V, Q¥; ¥, 2)
—E{VgInk(x|2,%)| 2,90}
(79)

By evaluating (79) using ¥ = ¥ and noting (77), we
obtain

Ve INL(W;2) = Vo, Q0% D, 2)| 40y (80)
Differentiation of (79) with respect to ¥ gives,
Vg Ve InL(P; 2)
=V Ve Qw0 2)

—E{Va Ve Ink(X|Z2,%)|2,¥D} (81)
Differentiation of (79) with respect to ¥ gives,
0=VyV,,r Q¥:;¥" 2)

—E{VgInk(X | Z,®)VyoInk(X | Z,9)" | 2,00}
(82)

where 0 is the appropriately sized null matrix.
Substitution ¥ = ¥ and adding (81) and (82) re-

sults in
Ve Ve InL(¥;2) =V, Ve, oW; w0 2)
+ Vg Vi QT 0, 2)

(83)

This result is used in (33), using the ¥ from the last
EM iteration for a scan (i.e. ¥®1).
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